Friday 11 August 2017

Second Order Moving Average Filter


Processamento de sinal Filtros digitais Os filtros digitais são, por essência, sistemas amostrados. Os sinais de entrada e saída são representados por amostras com distância de tempo igual. Os filtros de Resposta de Implulgação Finita (FIR) são caracterizados por uma resposta de tempo dependendo apenas de um dado número das últimas amostras do sinal de entrada. Em outros termos: uma vez que o sinal de entrada caiu para zero, a saída do filtro fará o mesmo após um determinado número de períodos de amostragem. A saída y (k) é dada por uma combinação linear das últimas amostras de entrada x (k i). Os coeficientes b (i) dão o peso para a combinação. Eles também correspondem aos coeficientes do numerador da função de transferência de filtro do domínio z. A figura a seguir mostra um filtro FIR da ordem N 1: Para os filtros de fase linear, os valores dos coeficientes são simétricos em torno do meio e a linha de atraso pode ser dobrada em torno desse ponto intermediário para reduzir o número de multiplicações. A função de transferência de filtros FIR apenas permite um numerador. Isso corresponde a um filtro totalmente zero. Os filtros FIR normalmente requerem pedidos elevados, na magnitude de várias centenas. Assim, a escolha deste tipo de filtros precisará de uma grande quantidade de hardware ou CPU. Apesar disso, uma das razões para escolher uma implementação do filtro FIR é a capacidade de alcançar uma resposta de fase linear, que pode ser um requisito em alguns casos. No entanto, o designer fiter tem a possibilidade de escolher filtros IIR com uma boa linearidade de fase na banda passante, como os filtros Bessel. Ou para projetar um filtro allpass para corrigir a resposta de fase de um filtro IIR padrão. Filtros médios móveis (MA) Os modelos de modelos de mudança média (MA) são modelos de processo na forma: os processos MA são uma representação alternativa dos filtros FIR. Filtros médios Editar Um filtro calculando a média das N últimas amostras de um sinal É a forma mais simples de um filtro FIR, sendo todos os coeficientes iguais. A função de transferência de um filtro médio é dada por: A função de transferência de um filtro médio possui N zeros igualmente espaçados ao longo do eixo de freqüência. No entanto, o zero em DC é mascarado pelo pólo do filtro. Por isso, existe um lóbulo maior, um DC que responde pela banda passante do filtro. Filtros Integrator-Comb (CIC) em cascata Editar Um filtro integrador-pente em cascata (CIC) é uma técnica especial para a implementação de filtros médios colocados em série. A colocação em série dos filtros médios melhora o primeiro lobo em DC em comparação com todos os outros lóbulos. Um filtro CIC implementa a função de transferência de N filtros médios, cada um calculando a média das amostras de R M. Sua função de transferência é assim dada por: os filtros CIC são usados ​​para dizimar o número de amostras de um sinal por um fator de R ou, em outros termos, reescrever um sinal em uma freqüência mais baixa, eliminando amostras R 1 de R. O fator M indica quanto do primeiro lobo é usado pelo sinal. O número de estádios de filtragem médio, N. Indica quão bem outras bandas de freqüência são amortecidas, à custa de uma função de transferência menos plana em torno de DC. A estrutura CIC permite implementar todo o sistema com apenas agregadores e registros, sem usar multiplicadores que sejam gananciosos em termos de hardware. O downsampling por um fator de R permite aumentar a resolução do sinal por bits log 2 (R) (R). Filtros canônicos Edit Filtros canônicos implementam uma função de transferência de filtro com vários elementos de atraso iguais à ordem do filtro, um multiplicador por coeficiente de numerador, um multiplicador por coeficiente de denominador e uma série de agregadores. De modo semelhante às estruturas canônicas de filtros ativos, esse tipo de circuitos mostrou-se muito sensível aos valores dos elementos: uma pequena alteração nos coeficientes teve um grande efeito na função de transferência. Aqui também, o design de filtros ativos mudou de filtros canônicos para outras estruturas, como cadeias de seções de segunda ordem ou filtros saltos. Secções de cadeia de segunda ordem Editar uma segunda seção de ordem. Muitas vezes referido como biquad. Implementa uma função de transferência de segunda ordem. A função de transferência de um filtro pode ser dividida em um produto de funções de transferência associadas a um par de pólos e possivelmente um par de zeros. Se a ordem das funções de transferência for estranha, então uma seção de primeira ordem deve ser adicionada à cadeia. Esta seção está associada ao pólo real e ao zero real se houver um. Forma direta 1 forma direta 2 forma direta 1 transposição de forma direta 2 transposta A forma direta 2 transposta da figura a seguir é especialmente interessante em termos de hardware necessário, bem como a quantificação de sinal e coeficiente. Digital Leapfrog Filters Editar estrutura de filtro Editar filtros de salto digital base na simulação de filtros de salto ativos analógicos. O incentivo para esta escolha é herdar das excelentes propriedades de sensibilidade à banda passante do circuito de escada original. O seguinte filtro 4-bit de passagem do all-pole low-pass pode ser implementado como um circuito digital, substituindo os integradores analógicos por acumuladores. A substituição dos integradores analógicos por acumuladores corresponde a simplificar a transformada Z em z 1 s T. Quais são os dois primeiros termos da série Taylor de z e x p (s T). Essa aproximação é boa o suficiente para filtros onde a freqüência de amostragem é muito maior do que a largura de banda do sinal. Transmissão de função de transferência A representação de espaço de estado do filtro anterior pode ser escrita como: A partir deste conjunto de equações, pode-se escrever as matrizes A, B, C, D como: A partir desta representação, ferramentas de processamento de sinal, como Octave ou Matlab, permitem traçar A resposta de freqüência dos filtros ou para examinar seus zeros e pólos. No filtro de salto digital, os valores relativos dos coeficientes definem a forma da função de transferência (Butterworth. Chebyshev.), Enquanto suas amplitudes definem a freqüência de corte. Dividir todos os coeficientes por um fator de dois desloca a frequência de corte para baixo por uma oitava (também um fator de dois). Um caso especial é o filtro Buterworth de 3ª ordem, que possui constantes de tempo com valores relativos de 1, 12 e 1. Devido a isso, este filtro pode ser implementado em hardware sem qualquer multiplicador, mas usando mudanças em vez disso. Os modelos Autoregressive (AR) dos Filtros Autoregressivos (AR) Edit Autoregressive (AR) são modelos de processo na forma: Onde u (n) é a saída do modelo, x (n) é a entrada do modelo e u (n - m) são anteriores Amostras do valor de saída do modelo. Esses filtros são chamados de autorregressivos porque os valores de saída são calculados com base em regressões dos valores de saída anteriores. Os processos AR podem ser representados por um filtro de todos os pólos. Filtros ARMA Edit Autoregressive Moving-Average (ARMA) filtros são combinações de AR e MA filtros. A saída do filtro é dada como uma combinação linear tanto da entrada ponderada como das amostras de saída ponderadas: os processos ARMA podem ser considerados como um filtro IIR digital, com pólos e zeros. Os filtros AR são preferidos em muitos casos porque podem ser analisados ​​usando as equações de Yule-Walker. Os processos MA e ARMA, por outro lado, podem ser analisados ​​por equações não-lineares complicadas, difíceis de estudar e modelar. Se tivermos um processo AR com coeficientes de peso de toque a (um vetor de a (n), a (n - 1).) Uma entrada de x (n). E uma saída de y (n). Podemos usar as equações de Yule-Walker. Dizemos que x 2 é a variância do sinal de entrada. Nós tratamos o sinal de dados de entrada como um sinal aleatório, mesmo que seja um sinal determinista, porque não sabemos qual será o valor até recebê-lo. Podemos expressar as equações de Yule-Walker como: Onde R é a matriz de correlação cruzada da saída do processo E r é a matriz de autocorrelação da saída do processo: Variance Edit Podemos mostrar que: Podemos expressar a variância do sinal de entrada como: Ou , Expandindo e substituindo in para r (0). Podemos relacionar a variância de saída do processo com a variância de entrada: Filtro Exponencial Esta página descreve a filtragem exponencial, o filtro mais simples e mais popular. Esta é parte da seção Filtragem que faz parte de um Guia de Detecção e Diagnóstico de Falhas. Visão geral, constante de tempo e equivalente analógico. O filtro mais simples é o filtro exponencial. Possui apenas um parâmetro de sintonia (diferente do intervalo de amostra). Exige o armazenamento de apenas uma variável - a saída anterior. É um filtro IIR (autoregressivo) - os efeitos de uma mudança de entrada se deterioram exponencialmente até que os limites de exibição ou a aritmética do computador ocultem. Em várias disciplinas, o uso deste filtro também é referido como otimização exponencial 82201. Em algumas disciplinas, como a análise de investimentos, o filtro exponencial é chamado de uma média móvel 8220 ponderada exponencialmente 8221 (EWMA) ou apenas uma média móvel 8220 (EMA). Isso abusa a tradicional terminologia média 8221 de ARMA 8220 da análise de séries temporais, uma vez que não há histórico de entrada que seja usado - apenas a entrada atual. É o equivalente de tempo discreto da ordem 8220 da primeira ordem lag8221 comumente usado na modelagem analógica de sistemas de controle de tempo contínuo. Nos circuitos elétricos, um filtro RC (filtro com um resistor e um capacitor) é um atraso de primeira ordem. Ao enfatizar a analogia com os circuitos analógicos, o parâmetro de sintonia única é a constante do tempo 8220, 8221, geralmente escrito como a letra grega Tau (). De fato, os valores nos tempos de amostra discretos coincidem exatamente com o intervalo de tempo contínuo equivalente com a mesma constante de tempo. A relação entre a implementação digital e a constante de tempo é mostrada nas equações abaixo. Equações de filtro exponencial e inicialização O filtro exponencial é uma combinação ponderada da estimativa anterior (saída) com os dados de entrada mais recentes, com a soma dos pesos iguais a 1 para que a saída corresponda à entrada no estado estacionário. Seguindo a notação do filtro já introduzida: y (k) ay (k-1) (1-a) x (k) onde x (k) é a entrada bruta no tempo ky (k) é a saída filtrada no tempo ka É uma constante entre 0 e 1, normalmente entre 0,8 e 0,99. (A-1) ou a vezes é chamado de constante de deslocamento 82208221. Para sistemas com um passo de tempo fixo T entre amostras, a constante 8220a8221 é calculada e armazenada por conveniência apenas quando o desenvolvedor do aplicativo especifica um novo valor da constante de tempo desejada. Para sistemas com amostragem de dados em intervalos irregulares, a função exponencial acima deve ser usada com cada passo de tempo, onde T é o tempo desde a amostra anterior. A saída do filtro geralmente é inicializada para coincidir com a primeira entrada. À medida que a constante de tempo se aproxima de 0, a vai para zero, então não há filtragem 8211, a saída é igual à nova entrada. À medida que a constante de tempo é muito grande, as abordagens 1, de modo que a entrada nova é quase ignorada 8211 filtragem muito pesada. A equação do filtro acima pode ser reorganizada para o seguinte equivalente preditor-corretor: Este formulário torna mais evidente que a estimativa variável (saída do filtro) é predita como inalterável da estimativa anterior y (k-1) mais um termo de correção baseado No inesperado 8220innovation8221 - a diferença entre a nova entrada x (k) e a predição y (k-1). Este formulário também é o resultado de derivar o filtro exponencial como um caso especial simples de um filtro de Kalman. Qual é a solução ideal para um problema de estimativa com um conjunto particular de pressupostos. Etapa de resposta Uma maneira de visualizar a operação do filtro exponencial é traçar sua resposta ao longo do tempo para uma entrada de etapa. Ou seja, começando com a entrada e saída do filtro em 0, o valor de entrada é de repente alterado para 1. Os valores resultantes são traçados abaixo: no gráfico acima, o tempo é dividido pela constante de tempo do filtro tau para que você possa mais facilmente prever Os resultados para qualquer período de tempo, para qualquer valor da constante de tempo do filtro. Após um tempo igual à constante de tempo, a saída do filtro sobe para 63,21 do seu valor final. Após um tempo igual a 2 constantes de tempo, o valor sobe para 86,47 de seu valor final. As saídas após tempos iguais a 3,4 e 5 constantes de tempo são 95,02, 98,17 e 99,33 do valor final, respectivamente. Uma vez que o filtro é linear, isso significa que essas porcentagens podem ser usadas para qualquer magnitude da mudança de passo, não apenas pelo valor de 1 usado aqui. Embora a resposta gradual em teoria tenha um tempo infinito, do ponto de vista prático, pense no filtro exponencial como 98 a 99 8220done8221 respondendo após um tempo igual a 4 a 5 constantes de tempo de filtro. Variações no filtro exponencial Existe uma variação do filtro exponencial chamado 8220nonlinear exponencial filter8221 Weber, 1980. destinado a pesadamente filtrar o ruído dentro de uma certa amplitude 8220typical8221, mas depois responder mais rapidamente a mudanças maiores. Copyright 2010 - 2013, Greg Stanley Compartilhe esta página:

No comments:

Post a Comment